Intro to Nonwovens for PPE

Nonwovens Processes and Products overview for PPE currently in demand
Nonwovens used in PPE

- Spunbond
- Flashspun
- Meltblown
- SMS
- Wet laid

Many types of spunbond as well, we will focus on the most commonly used in medical PPE

- Many others, nonwovens is a large and varied industry
- Web Formation
 - Carding
 - Wet lay
 - Air lay
- Bonding
 - Hydroentagling
 - Needle punch
 - Resin bond
 - Through air bonding
Mostly Polypropylene and other olefins
Spunbond

- One step continuous process
- Can make 3 tonnes an hour and more
- Fabrics is made at 600 to 800 MPM or 20-30 MPH
- Various basis weights for multiple applications typically 10 – 75 g/m²
- 1oz/yd² = 28.3 g/m²
- Fiber sizes 15-20 Microns
- Oriented fibers with significate strength
- Naturally hydrophobic
- Can coat with chemicals for added functionality
- Fiber Orientation distribution is very uniform
- Very economical
Spunbond

• Can be stitched or ultrasonically bonded to for conversions

• Examples
 • Hygiene
 • Medical
 • Geotextile
 • Furnishings
Quick note on extrusion
Quick note on extrusion
Quick note on bonding

• Pont bonding
• 13-15%
• Heat and pressure
• Precise pressure along a wide roll
• Flatter calender, porosity goes down, filtration goes up
Flashspun (Tyvek)

- HDPE
- In solvent
- Rapid expansion from nozzle makes .5 to 10 micron fibers
- High density fabric has good barrier properties and breathability with high tear strength
- Can be plasma treated for printing
- DuPont keeps a tight cover on the process
Meltblown

- Low caliper
- Fine fibers 1-5 Microns
- Fiber Orientation distribution is very uniform
- Uniform porosity Porosity 80-90%
- Barrier properties, Hydrohead typically 40-70 cm H2O
- Oil sorbents
- Filters
- Invented by Exxon
BIAX Meltblown

• AKA Concentric Meltblown
• ~10 Microns
• Lower fabric density then Exxon MB
• Can process more unique polymers
SMS
Spunbond-Meltblown-Spunbond AKA Barrier

Spunbond

Meltblown

Spunbond

Calendar Bonder

Winder
SMS

- Best of both worlds
- Meltblown barrier properties
- Spunbond strength and flexibility
- Super hydrophobic, Flurochemicals and Silicon
- Radiation sterilization
- Also treated for alcohol repellency and antistatic chemicals
- Water, blood and alcohol splash and impact resistant

https://www.golden-nonwoven.com/

https://www.cardinalhealth.com/
Wet laid

• Like paper making
• Then Hydroentagled
• Level 4 can be PE coated
• Can be made of short PVA, PET, wood pulp fibers
• Treated with fluorocarbons and other treatments for improved barrier properties to blood and fluids
Wet laid
Hydroentangling
Hydroentangling
Barrier levels of protection

General Relationships between barrier performance and anticipated exposure risks per AAMI specifications

<table>
<thead>
<tr>
<th>ANSI/AAMI PB70 barrier performance</th>
<th>Anticipated Risk Of Exposure</th>
<th>Examples of Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluid Amount</td>
<td>Fluid Spray or Splash</td>
</tr>
<tr>
<td>Level 1</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://www.aami.org/news-resources/covid-19-updates/coronavirus-resources-for-the-field

https://www.fda.gov/medical-devices/personal-protective-equipment-infection-control/medical-gowns
Testing of barrier properties
Hydrohead

Courtesy AATCC, Join AATCC for webinars on details of test methods 5/28 an 6/3
https://www.aatcc.org/events/online/webinars/
Testing of barrier properties
Impact testing

Courtesy AATCC, Join AATCC for webinars on details of test methods 5/28 an 6/3
https://www.aatcc.org/events/online/webinars/
Face masks/respirators

• Not SMS per se
• 3-5 Layers, layered at assembly
• Spunbond top and bottom
• Meltblown in middle layer
• Sometime activated carbon layer
• Sometimes carded dirt holding layer
• Best masks have multiple layers that have decreasingly smaller fibers
• Electrostatics
• Surgical masks do not provide full protection from inhalation of airborne pathogens, such as viruses. Do have fluid resistance
Face masks

• https://www.cdc.gov/niosh/npptl/pdfs/UnderstandDifferenceInfographic-508.pdf

Questions

• Join us next time for overview of filtration